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Abstract

The eccentric connectivity index of a graph G is ξc(G) =
∑

v∈V (G) ε(v) deg(v),

and the eccentric distance sum is ξd(G) =
∑

v∈V (G) ε(v)D(v), where ε(v) is the
eccentricity of v, and D(v) the sum of distances between v and the other vertices.
A lower and an upper bound on ξd(G) − ξc(G) is given for an arbitrary graph
G. Regular graphs with diameter at most 2 and joins of cocktail-party graphs
with complete graphs form the graphs that attain the two equalities, respectively.
Sharp lower and upper bounds on ξd(T ) − ξc(T ) are given for arbitrary trees.
Sharp lower and upper bounds on ξd(G) + ξc(G) for arbitrary graphs G are also
given, and a sharp lower bound on ξd(G) for graphs G with a given radius is
proved.
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1 Introduction

In this paper we consider simple and connected graphs. If G = (V (G), E(G)) is a graph
and u, v ∈ V (G), then the distance dG(u, v) between u and v is the number of edges
on a shortest u, v-path. The eccentricity of a vertex and its total distance are distance
properties of central interest in (chemical) graph theory; they are defined as follows.
The eccentricity εG(v) of a vertex v is the distance between v and a farthest vertex
from v, and the total distance DG(v) of v is the sum of distances between v and the
other vertices of G. Even more fundamental property of a vertex in (chemical) graph
theory is its degree (or valence in chemistry), denoted by degG(v). (We may skip the
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index G in the above notations when G is clear.) Multiplicatively combining two out
of these three basic invariants naturally leads to the eccentric connectivity index ξc(G),
the eccentric distance sum ξd(G), and the degree distance DD(G), defined as follows:

ξc(G) =
∑

v∈V (G)

ε(v) deg(v) .

ξd(G) =
∑

v∈V (G)

ε(v)D(v) .

DD(G) =
∑

v∈V (G)

deg(v)D(v) .

ξc was introduced by Sharma, Goswami, and Madan [17], ξd by Gupta, Singh, and
Madan [7], and DD by Dobrynin and Kochetova [6] and by Gutman [8]. These three
topological indices are well investigated, selected contrubutions to the eccentric con-
nectivity index are [10, 13, 22], to the eccentric distance sum [1, 14, 21], and to the
degree distance [15, 18, 19]. The three invariants were also compared to other invari-
ants, cf. [2, 3, 4, 5, 23]. For information on additional topological indices based on
eccentricity see [16].

In [11] the eccentric distance sum and the degree distance are compared, while
in [24] the difference between the eccentric connectivity index and the (not defined here)
connective eccentricity index is studied. The primary motivation for the present paper,
however, are the papers [12, 25] in which ξd(G)−ξc(G) was investigated. In [25], Zhang,
Li, and Xu, besides other results on the two indices, determined sharp upper and lower
bounds on ξd(G)− ξc(G) for graphs G of given order and diameter 2. Parallel results
were also derived for sub-classes of diameter 2 graphs with specified one of the minimum
degree, the connectivity, the edge-connectivity, and the independence number. Hua,
Wang, and Wang [12] extended the last result to general graphs. More precisely, they
characterized the graphs that attain the minimum value of ξd(G) − ξc(G) among all
connected graphs G of given independence number. They also proved a related result
for connected graphs with given matching number.

In this paper we continue the investigation along the lines of [12, 25] and proceed
as follows. In the rest of this section definitions and some observations needed are
listed. In Section 2, we give a lower and an upper bound on ξd(G)− ξc(G) and in both
cases characterize the equality case. The upper bound involves the Wiener index, the
first Zagreb index, as well as the degree distance of G. In Section 3 we focus on trees
and first prove that among all trees T with given order and diameter, ξd(T )− ξc(T ) is
minimized on caterpillars. Using this result we give a lower bound on ξd(T )−ξc(T ) for
all trees T with given order, the bound being sharp precisely on stars. We also give a
sharp upper bound on ξd(T )−ξc(T ) for trees T with given order. In the last section we
give a sharp lower bound and a sharp upper bound on ξd(G) + ξc(G), compare ξd(G)
with ξc(G) for graphs G with not too large maximum degree, and give a sharp lower
bound on ξd(G) for graphs G with a given radius.
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1.1 Preliminaries

The order and the size of a graph G will be denoted by n(G) and m(G), respectively.
The star of order n ≥ 2 is denoted by Sn; in other words, Sn = K1,n−1. If n ≥ 2, then
the cocktail party graph CP2n is the graph obtained from K2n by removing a perfect
matching. The join G⊕H of graphs G and H is the graph obtained from the disjoint
union of G and H by connecting by an edge every vertex of G with every vertex of H .
The maximum degree of a vertex of G is denoted by ∆(G). A graph G is regular if all
vertices have the same degree. The first Zagreb index [9] M1(G) of G is the sum of the
squares of the degrees of the vertices of G. The Wiener index [20] W (G) of G is the
sum of distances between all pairs of vertices in G.

The diameter diam(G) and the radius rad(G) of a graph G are the maximum and
the minimum vertex eccentricity in G, respectively. A graph G is self-centered if all
vertices have the same eccentricity. It this eccentricity is d, we further say that G is
d-self-centered. The eccentricity ε(G) of G is

ε(G) =
∑

v∈V (G)

ε(v) .

The eccentric connectivity index of G can be equivalently written as

ξc(G) =
∑

uv∈E(G)

ε(u) + ε(v) , (1)

and the eccentric distance sum as

ξd(G) =
∑

{u,v}⊆V (G)

(ε(u) + ε(v))d(u, v) . (2)

2 The difference on general graphs

In this section we give some sharp upper and lower bounds on ξd(G) − ξc(G) for an
arbitrary graph G. The bounds are in terms of the eccentricity, the Wiener index, the
first Zagreb index, the degree distance, the maximum degree, the size, and the order
of G.

Theorem 2.1 If G is a connected graph, then the following hold.

(i) ξd(G) − ξc(G) ≥ 2
(

n(G) − 1 − ∆(G)
)

ε(G). Moreover, the equality holds if and
only if G is a regular graph with diam(G) ≤ 2.

(ii) ξd(G)−ξc(G) ≤ 2n(G)
(

W (G)−m(G)
)

+M1(G)−DD(G). Moreover, the equality
holds if and only if G ∈ {P4} ∪ {CP2k ⊕Kn(G)−2k : 0 ≤ k ≤ n/2}.
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Proof. (i) Let v be a vertex of G. If w is not adjacent to v, then d(v, w) ≥ 2 and
consequently D(v)− deg(v) ≥ 2(n(G)− 1−∆(G)). Thus:

ξd(G)− ξc(G) =
∑

v∈V (G)

ε(v)
(

D(G)− deg(v)
)

≥
∑

v∈V (G)

2 ε(v)
(

n(G)− 1−∆(G)
)

= 2 ε(G)
(

n(G)− 1−∆(G)
)

.

The equality holds if and only if D(v)− deg(v) = 2(n(G)− 1−∆(G)) for every vertex
v. As the last equality in particular holds for a vertex of maximum degree, we infer
that G must be regular. Then the condition D(v) − deg(v) = 2(n(G) − 1 − ∆(G))
simplifies to

D(v) + ∆(G) = 2n(G)− 2 . (3)

Suppose that diam(G) = d, and let xi, i ∈ {2, . . . , d}, be the number of vertices at
distance i from v. Then n(G) = 1 + ∆(G) + x2 + · · ·+ xd and D(v) = ∆(G) + 2x2 +
· · ·+ dxd. Plugging these equalities into (3) yields

2∆(G) + 2x2 + · · ·+ dxd = 2 + 2∆(G) + 2x2 + · · ·+ 2xd − 2

which implies that x3 = · · · = xd = 0, that is, diam(G) = 2. Finally, if diam(G) = 2,
then D(v) = ∆(G) + 2(n(G) − ∆(G) − 1), so (3) is fulfilled for every regular graph
of diameter 2. Clearly, (3) is also fulfilled for graphs of diameter 1, that is, complete
graphs.

(ii) If v ∈ V (G), then clearly ε(v) ≤ n(G)− deg(v). Then we deduce that

ξd(G)− ξc(G) =
∑

v∈V (G)

ε(v)
(

D(v)− deg(v)
)

≤
∑

v∈V (G)

(

n(G)− deg(v)
)(

D(v)− deg(v)
)

= n(G)
∑

v∈V (G)

(

D(v)− deg(v)
)

+
∑

v∈V (G)

deg(v)2

−
∑

v∈V (G)

deg(v)D(v)

= 2n(G)
(

W (G)−m(G)
)

+M1(G)−DD(G) .

The equality in the above computation holds if and only if ε(v) = n(G)− deg(v) holds
for all v ∈ V (G). So suppose that G is a graph for which ε(v) = n(G)− deg(v) holds
for all v ∈ V (G) and distinguish the following two cases.

Suppose first that diam(G) ≥ 3. Let P be a diametral path in G and let v and v′

be its endpoints. Since ε(v) = n(G)− deg(v) and |V (P ) \N [v]| = ε(v)− 1, it follows
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that n(G) = 1 + deg(v) + |V (P ) \N [v]|. The latter means that V (G) = N [v] ∪ V (P ).
Since diam(G) = ε(v) ≥ 3 it follows that deg(v′) = 1. Since we have also assumed that
ε(v′) = n(G)− deg(v′) holds we see that ε(v′) = n(G) − 1 which in turn implies that
G is a path. Among the paths Pn, n ≥ 4, the path P4 is the unique one which fulfills
the condition ε(v) = n− deg(v) for all v ∈ V (Pn).

Suppose second that diam(G) ≤ 2. Then ε(v) ∈ {1, 2} for every v ∈ (G). Since
ε(v) = n(G) − deg(v) it follows that deg(v) ∈ {n(G) − 1, n(G) − 2}. Let V1 = {v :
deg(v) = n(G)−1} and V2 = {v : deg(v) = n(G)−2}. Then V (G) = V1∪V2. Clearly,
the subgraph of G induced by V1 is complete, and there are all possible edges between
V1 and V2. Moreover, the complement of the subgraph of G induced by V2 is a disjoint
union of copies ofK2, which means that V2 induces a cocktail party graph. In summary,
G must be of the form CP2k ⊕Kn(G)−2k, where 0 ≤ k ≤ n/2. On the other hand, the
condition ε(v) = n(G)−deg(v) clearly holds for each vertex of CP2k ⊕Kn(G)−2k , hence
these graphs together with P4 from the previous case are precisely the graphs that
attain the equality. �

3 The difference on trees

In this section we turn our attention to ξd(T )− ξc(T ) for trees T , and in particular on
extremal trees regarding this difference.

Theorem 3.1 Among all trees T with given order and diameter, min{ξd(T )− ξc(T )}
is achieved on caterpillars.

Proof. Fix the order and diameter of trees to be considered. Let T be an arbitrary
tree that is not a caterpillar with this fixed order and diameter. Let P be a diametral
path of T connecting x to y. Then the eccentricity of each vertex w of T is equal to
max{d(w, x), d(w, y)}. Let z 6= x, y be a vertex of P and let Tz be a maximal subtree
of T which contains z but no other vertex of P . We may assume that z can be selected
such that εTz

(z) = k ≥ 2, for otherwise T is a caterpillar. Let u be vertex of Tz with
d(u, z) = k− 1 and let v be the neighbor of u with d(v, z) = k− 2. Let S = N(u) \ {v}
and let s = |S|. Note that s > 0. Let now T ′ be the tree obtained from T by replacing
the edges between u and the vertices of S with the edges between v and the vertices
of S.

Claim A: ξd(T )− ξc(T ) > ξd(T ′)− ξc(T ′).
Set Xd = ξd(T )− ξd(T ′) and Xc = ξc(T )− ξc(T ′). To prove the claim it is equivalent
to show that Xd −Xc > 0.

For a vertex w ∈ V (G)\(S∪{u}) we have DT ′(w) = DT (w)−s and εT ′(w) ≤ εT (w).
Moreover if w ∈ S, then εT ′(w) = εT (w)− 1 and DT (w) = DT ′(w) + n− s− 2. With
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these facts in hand we can compute as follows.

Xd =
∑

w∈V (T )

εT (w)DT (w)−
∑

w∈V (T ′)

εT ′(w)DT ′(w)

= εT (u)DT (u)− εT ′(u)DT ′(u) + εT (v)DT (v)− εT ′(v)DT ′(v)

+
∑

w∈S

εT (w)DT (w)− εT ′(w)DT ′(w)

+
∑

w∈V (T )−(S∪{u,v})

εT (w)DT (w)− εT ′(w)DT ′(w)

≥ s(εT (v)− εT (u)) +
∑

w∈V (T )−(S∪{u,v})

εT (w)s

+
∑

w∈S

(

εT (w)DT (w)− (εT (w)− 1)(DT (w)− n + 2 + s)
)

= −s +
∑

w∈V (T )−(S∪{u,v})

εT (w)s

+
∑

w∈S

(

(DT (w)− n+ 2 + s)− εT (w)(−n+ 2 + s)
)

= −s +
∑

w∈V (T )\(S∪{u,v})

εT (w)s+ (n− s− 2)
∑

w∈S

εT (w)− 1 +DT (w)

= −s +
∑

w∈V (T )\(S∪{u,v})

εT (w)s

+s(n− s− 2)εT (u) + s(DT (u) + n− 2)

= s
[

ε(T )− εT (u)(s+ 2)− s+ 1 + (n− s− 2)εT (u) +DT (u) + n− 3)
]

.

Similarly, but shorter, we get that Xc = 2s. Thus

Xd −Xc ≥ s
[

ε(T )− εT (u)(s+ 2)

+ (n− s− 2)εT (u) +DT (u) + n− s− 4)
]

> 0 .

This proves Claim A. If T ′ is not a caterpillar, we can repeat the construction as many
times as required to arrive at a caterpillar. Since at each step the value of ξd − ξc is
decreased, the minimum of this difference is indeed achieved on caterpillars. �

Theorem 3.2 If T is a tree of order n ≥ 3, then

ξd(T )− ξc(T ) ≥ 4n2 − 12n+ 8 .

Moreover, equality holds if and only if T = Sn.
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Proof. Let n ≥ 3 be a fixed integer. By Theorem 3.1, it suffices to consider caterpillars.
More precisely, let T be a caterpillar of order n and with diam(T ) = d ≥ 3. Then we
wish to prove that ξd(T )−ξc(T ) > ξd(Sn)−ξc(Sn) = 4n2−12n+8. The latter equality
is straightforward to check, for the strict inequality we proceed as follows.

Let w, z ∈ V (T ) be two adjacent vertices of eccentricities d−1 and d−2, respectively.
Let S = N(w) \ {z} and set s = |S|. As ε(w) = d − 1, we have s ≥ 1. Let further
S1 = V (G) \ (S ∪ {w, z}). Construct now a tree T ′ from T by replacing the edges
between w and the vertices of S with the edges between z and the vertices of S. Note
that degT (w) = degT ′(w) + s = 1 + s and degT (z) = degT ′(z) − s, while the other
vertices have the same degree in T and T ′. Further, it is straightforward to verify the
following relations:

DT (w) = DT ′(w)− s, εT (w) = εT ′(w);

DT (z) = DT ′(z) + s, εT ′(z) ≤ εT (z) ≤ εT ′(z) + 1;

DT (x) = DT ′(x) + n− s− 2, εT (x) = εT ′(x) + 1 (x ∈ S);

DT (y) = DT ′(y) + s, εT ′(y) ≤ εT (y) ≤ εT ′(y) + 1 (y ∈ S1).

Setting Xd = ξd(T )− ξd(T ′) we have:

Xd =
∑

v∈{w,z}

DT (v)εT (v)−DT ′(v)εT ′(v) +
∑

v∈S

DT (v)εT (v)−DT ′(v)εT ′(v)

+
∑

v∈S1

DT (v)εT (v)−DT ′(v)εT ′(v)

≥ s(εT ′(z)− εT (w)) +
∑

v∈S

DT (v)εT (v)− (DT (v)− (n− s− 2))(εT (v)− 1)

+
∑

v∈S1

DT (v)εT (v)− (DT (v)− s)εT (v)

≥ −s+ (n− s− 2)
∑

v∈S

εT (v) +
∑

v∈S

DT (v)− s(n− s− 2) + s
∑

v∈S1

εT (v)

≥ −s+ 3s(n− s− 2) + s(2(n− s− 2) + 2s+ 1)− s(n− s− 2)

+3s(n− s− 2)

= 5s(n− s− 3) + 2s(n− 1) .
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Similarly, setting Xc = ξc(T )− ξc(T ′), we have

Xc =
∑

v∈{w,z}

(

degT (v)εT (v)− degT ′(v)εT ′(v)
)

+
∑

v∈S

(

degT (v)εT (v)− degT ′(v)εT ′(v)
)

+
∑

v∈S1

(

degT (v)εT (v)− degT ′(v)εT ′(v)
)

≤ sεT (w) + degT (z)εT (z)− (degT (z) + s)(εT (z)− 1)

+s+
∑

v∈S1

degT (v)εT (v)− degT (v)(εT (v)− 1)

= 2s+ degT (z) +
∑

v∈S1

deg(v)

= 2n− 3.

Therefore,

Xd −Xc ≥
(

5s(n− s− 3) + 2s(n− 1)
)

−
(

2n− 3
)

> 0 ,

that is, ξd(T )− ξc(T ) > ξd(T ′)− ξc(T ′). Repeating the above transformation until Sn

is constructed finishes the argument. �

To bound the difference ξd(T )− ξc(T ) for an arbitrary tree T from above, we first
recall the following result.

Lemma 3.3 [14, Theorem 2.1] Let w be a vertex of graph G. For non-negative integers
p and q, let G(p, q) denotes the graph obtained from G by attaching to vertex w pendant
paths P = wv1 · · · vp and Q = wu1 · · ·uq of lengths p and q, respectively. Let G(p +
q, 0) = G(p, q)− wu1 + vpu1. If r = εG(w) and r ≥ p ≥ q ≥ 1, then

ξd(G(p+ q, 0))− ξd(G(p, q)) ≥
pq

6

[

6DG(w) + p(2p− 3) + q(2q − 3) + 3pq − 12r

+ 6n(G)(p+ q + r + 1) + 6
∑

v∈V (G)

ε(v)
]

.

Lemma 3.4 Let G, p, q, G(p, q), and G(p+ q, 0) be as in Lemma 3.3. Then

ξc(G(p+ q, 0))− ξc(G(p, q)) ≤ q(3p+ 2m(G)− 1) .
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Proof. Let deg′(v) and ε′(v) (resp. deg(v) and ε(v)) denote the degree and the eccen-
tricity of v in G(p+ q, 0) (resp. G(p, q)). Then we have:

deg′(w) = deg(w)− 1, ε′(w) ≤ ε(w) + q;

deg′(vi) = deg(vi), i ∈ [p− 1], deg′(vp) = deg(vp) + 1;

ε′(vi) ≤ ε(vi) + q, i ∈ [p];

deg′(uj) = deg(uj), ε′(uj) = ε(uj) + p;

ε′(x) ≤ ε(x) + q, x ∈ V (G) .

Moreover, the degrees of vertices in G(p + q, 0) do not decrease. Calculating the
difference of contributions of vertices in ξc for G(p+ q, 0) and G(p, q), we can estimate
the difference Xc = ξc(G(p+ q, 0))− ξc(G(p, q)) as follows:

Xc ≤
∑

w 6=x∈V (G)

deg(x)q +

q
∑

i=1

deg(ui)p+

⌊ p

2
⌋

∑

i=1

deg(vi)q

+ε(vp) + (deg(w)− 1)(r + q)− deg(w)r

=
(

2m(G)− deg(w)
)

q + (2q − 1)p+ pq + p+ q(deg(w)− 1)

= 2qm(G) + 3pq − q .

�

Theorem 3.5 If T is a tree of order n, then

ξd(T )− ξc(T ) ≤

{

25n4

96
− n3

6
− 89n2

48
+ 19n

6
− 45

32
; n odd ,

25n4

96
− n3

6
− 43n2

24
+ 19n

6
− 2; n even .

Moreover, equality holds if and only if T = Pn.

Proof. The right side of the above inequality is equal to ξd(Pn)− ξc(Pn). (The value
of ξd(Pn) has been determined in [14], while it is straightforward to deduce ξc(Pn).
Combining the two formulas, the polynomials from the right hand side of the inequality
are obtained.) Suppose now that T 6= Pn. Then there is always a vertex w of degree
at least 3 such that we can apply Lemmas 3.3 and 3.4. Setting

Xdc =
(

ξd(T (p+ q, 0)− ξc(p+ q, 0)
)

−
(

ξd(T (p, q)− ξc(p, q)
)

9



we have:

Xdc ≥ pqDT (w) +
pq

6

(

p(2p− 3) + q(2q − 3)
)

+
(pq)2

2
− 2pqr

+pqn(T )(p+ q + r + 1) + pq
∑

v∈V (T )

ε(v)−
(

2qm(T ) + 3pq − q
)

= pq
(

DT (w) +
∑

v∈V (T )

ε(v)− 3
)

+
pq

6

(

2p2 − 3p+ 2q2 − 3q + 3pq
)

+pqr(n(G)− 2) + q
(

pn(T )(p+ q + r)− 2m(T ) + 1
)

> 0

and the result follows. �

4 Further comparison

In this concluding section we give sharp lower and upper bounds on ξd(G) + ξc(G),
compare ξd(G) with ξc(G) for graphs G with ∆(G) ≤ 2

3
(n− 1), and give a sharp lower

bound on ξd(G) for graphs G with a given radius.

Theorem 4.1 If G is a connected graph, then the following hold.

(i) ξd(G) + ξc(G) ≤ 2(n(G)− 1)ε(G) + 2diam(G)
(

W (G) +m(G)− 2
(

n(G)
2

))

.

(ii) ξd(G) + ξc(G) ≥ 2(n(G)− 1)ε(G) + 2rad(G)
(

W (G) +m(G)− 2
(

n(G)
2

))

.

Moreover, each of the equalities holds if and only if G is a self-centered graph.

Proof. (i) Partition the pairs of vertices of G into neighbors and non-neighbors, and
using (1), we can compute as follows:

ξd(G) =
∑

{u,v}⊆V (G)

(ε(u) + ε(v))d(u, v)

=
∑

uv∈E(G)

(ε(u) + ε(v)) + 2
∑

{u,v}⊆V (G)
d(u,v)≥2

(ε(u) + ε(v))

+
∑

{u,v}⊆V (G)
d(u,v)≥2

(

ε(u) + ε(v)
)(

d(u, v)− 2
)

= ξc(G) +
∑

{u,v}⊆V (G)

(ε(u) + ε(v))− 2ξc(G)

+
∑

{u,v}⊆V (G)
d(u,v)≥2

(

ε(u) + ε(v)
)(

d(u, v)− 2
)

≤ −ξc(G) + 2(n(G)− 1)ε(G)

+2diam(G)
(

W (G) +m(G)− 2
(

n(G)
2

))

.
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The inequality above becomes equality if and only if ε(v) = diam(G) for every v ∈
V (G). That is, the equality holds if and only if G is a self-centered graph.

(ii) This inequality as well as its equality case are proved along the same lines as
(i). The only difference is that the inequality ε(u) + ε(v) ≤ 2diam(G) is replaced by
ε(u) + ε(v) ≥ 2rad(G). �

In our next result we give a relation between ξd(G) and ξc(G) for graph G with
maximum degree at most 2

3
(n(G)− 1).

Theorem 4.2 If G is a graph with ∆(G) ≤ 2
3
(n−1), then ξd(G) ≥ 2ξc(G). Moreover,

the equality holds if and only if G is 2-self-centered, 2
3
(n(G)− 1)-regular graph.

Proof. Set n = n(G) and let v be a vertex of G. Since deg(v) < n−1 we have ε(v) ≥ 2.
Therefore D(v) ≥ 2(n−1)−deg(v) with equality holding if and only if ε(v) = 2. Using
the assumption that deg(v) ≤ 2

3
(n− 1), equivalently, 2n− 2 ≥ 3 deg(v), we infer that

ε(v)D(v) ≥ 2ε(v) deg(v). Summing over all vertices of G the inequality is proved. Its
derivation also reveals that the equality holds if and only if deg(v) = 2

3
(n − 1) and

ε(v) = 2 for each vertex v ∈ V (G). �

To conclude the paper we give a lower bound on the eccentric distance sum in terms
of the radius of a given graph. Interestingly, the cocktail-party graphs are again among
the extreme graphs.

Theorem 4.3 If G is a graph with rad(G) = r, then

ξd(G) ≥
(

n(G)− 1 +
(

r

2

))

ε(G) .

Equality holds if and only if G is a complete graph or a cocktail-party graph.

Proof. Set n = n(G) and let v ∈ V (G). Let P be a longest path starting in v.
Separately considering the neighbors of v, the last ε(v) − 2 vertices of P , and all the
other vertices, we can estimate that

D(v) ≥ deg(v) + (3 + · · ·+ ε(v)) + 2
(

n− 1− deg(v)− (ε(v)− 2)
)

= 2n− deg(v) +
ε(v)2 − 3ε(v)

2
− 1 .

Since n−deg(v) ≥ ε(v) for every vertex v ∈ V (G), we haveD(v) ≥ n+ε(v)+ ε(v)2−3ε(v)
2

−
1. Consequently, having the fact ε(v) ≥ r in mind, we get D(v) ≥ n − 1 +

(

r

2

)

.
Multiplying this inequality by ε(v) and summing over all vertices of G the claimed
inequality is proved.

From the above derivation we see that the equality can holds only if ε(v) = r = n−
deg(v) holds for every v ∈ V (G). From the equality part of the proof of Theorem 2.1(ii)
we know that this implies diam(G) ≤ 2. For the equality we must also have D(v) =
n−1+

(

r

2

)

for every v. If r = 2 this means that D(v) = n and hence deg(v) = n−2. It
follows that G is a cocktail-party graph. And if r = 2, then we get a complete graph.
�
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